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Abstract

The problem of the relaxation of identical spins 1/2 induced by chemical exchange between spins with different chemical shifts in the
presence of time-dependent RF irradiation (in the first rotating frame) is considered for the fast exchange regime. The solution for the
time evolution under the chemical exchange Hamiltonian in the tilted doubly rotating frame (TDRF) is presented. Detailed derivation is
specified to the case of a two-site chemical exchange system with complete randomization between jumps of the exchanging spins. The
derived theory can be applied to describe the modulation of the chemical exchange relaxation rate constants when using a train of adi-
abatic pulses, such as the hyperbolic secant pulse. Theory presented is valid for quantification of the exchange-induced time-dependent
rotating frame longitudinal T1q,ex and transverse T2q,ex relaxations in the fast chemical exchange regime.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In the early days in the development of nuclear magnetic
resonance, in typical experimental scenarios and their the-
oretical description, pulse durations (in the microsecond
range) were usually so short in comparison to the time scale
of temporal delays that the so-called ‘‘delta function’’
approximation was considered valid. By this we mean that
the time evolution of the magnetization during the pulses
could be ignored. This also entailed the total neglect of
relaxation processes during the pulse. In more recent appli-
cations, the duration of pulses has increased to the millisec-
ond order of magnitude, and the use of long trains of such
pulses is now commonplace [1,2]. This means that current
experimental protocols now demand that relaxation during
pulses cannot be neglected. With the advent of millisecond
pulse durations there also is use of time-dependent pulse
parameters such as time-dependent pulse amplitudes and
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frequency offsets. All of these issues demanded clarification
with a suitable theoretical formalism.

Here, it has been found that the introduction of time-de-
pendent relaxation functions can be successfully used to
simulate adiabatic pulses of the hyperbolic secant HSn
family [2,3]. The concept of time-dependent relaxation
functions is not new and had been developed by many
investigators from the very beginning of the NMR formal-
ism [4–6]. The necessity of including time-dependence in
the relaxation functions here stems from the time-depen-
dence in the first rotating frame (RF) of both the pulse
amplitudes and the frequency offsets of adiabatic pulses
[1,7]. The need to model the dependence on the pulse
parameters of the RF applied necessitates working in the
tilted doubly rotating frame (TDRF) [8]. The theory devel-
oped here is applicable to the fast exchange regime (FXR)
[8]. Although direct experience with this formalism has
been restricted to modeling the HSn class of pulses, the
general method outlined here can be applied to a wide vari-
ety of the so-called ‘‘shaped pulses’’ [9,15,16]. The crux of
the method is to make the tilt angle of the effective field
with respect to the laboratory B0 field direction as well as
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the angular precession frequency around the time-depen-
dent effective field time-dependent [7]. This time-depen-
dence can be easily included using the Wigner rotation
matrices [10] to transform the relevant operators between
the various frames.

2. Theory

In this work the formalism originated by Kubo and
Tomita [11] and described in detail in [12] was adapted to
derive the time-dependent relaxation functions during adi-
abatic rotation. The theoretical effort is based on the use of
a second-order cumulant expansion [12]. We start by stat-
ing the cumulant second-order result:

I�z ðtÞ ¼ exp

Z t

0

�ðt � sÞhhTr½I�z ;H �exðt � sÞ�½H �exðtÞ; I�z �ii=hI�z I�z ids

� �
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I�þðtÞ ¼ exp

Z t

0
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� �
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Here, H �exðtÞ is the Hamiltonian written in the TDRF
simulating relaxation governed by a chemical exchange
mechanism. Note, that the I�z I�z term in Eq. (1) divides
the argument of the exponential. The hI�þI��i term in Eq.
(2) also divides the argument of the exponential. In Eqs.
(1) and (2) the superscript * indicates operators written in
the TDRF [8]. The double carets indicate the taking of
an ensemble average. For a detailed discussion of these
classes of Hamiltonians see the paper by Wennerstrom [13].

The chemical exchange Hamiltonians in terms of Carte-
sian spin operators are defined as

H �exðtÞ ¼ dxðtÞ½ðcosðaðtÞÞI�z � 1
2
sinðaðtÞÞÞ

� ðI�þ expð�iwðtÞÞ þ I�� expðiwðtÞÞÞ�. ð3Þ

Here, dx (t) is a stochastic variable that is 1 when the spin is
at either chemical site and zero otherwise. A similar equa-
tion to Eq. (3) holds for the case where the time argument
is [t � s].

The time-dependent tilt angle of the effective field to the
laboratory B0 field direction is defined as

aðtÞ ¼ tan�1 x1ðtÞ
DxðtÞ

� �
; ð4Þ

and the magnitude of the effective field is the time-depen-
dent quantity

xeffðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1ðtÞ þ Dx2ðtÞ
q

. ð5Þ

Here, w (t) is the time-dependent precession angle around
the effective field direction

wðtÞ ¼
Z t

0

xeffð1Þd1. ð6Þ

Here x1 (t) is the time-dependent pulse amplitude and
Dx (t) is the time-dependent pulse frequency offset.
To obtain the relaxation functions for the longitudinal
magnetization, commutators ½I�z ;H �exðt � sÞ� and
½H �exðtÞ; I�z � in Eq. (1) should be evaluated. Evaluation of
the commutators [14] leads to the following equation:

½I�z ;H �exðt � sÞ� ¼ � sinðaðt � sÞÞ=2 expð�iwðt � sÞÞ½I�z I�þ�
� 1

2
sinðaðt � sÞÞ expð�iwðt � sÞÞ½I�z I���

¼ �1
2
½sinðaðt � sÞÞ expð�iwðt � sÞÞI�þ

þ sinðaðt � sÞÞ expð�iwðt � sÞÞI���. ð7Þ

Similarly, the expression for the ½H �exðtÞ; I�z � at time t can be
derived. Further, the trace of the product of the two com-
mutators was calculated in the following form:

Tr½I�z ;H �exðt � sÞ�½H �exðtÞ; I�z �=hI�z I�z i
¼ hhdxðt � sÞdxðtÞiiTr½1

4
sinðaðtÞÞ sinðaðtÞÞ

� expð�iðwðt � sÞ � wðtÞÞI�þI�� þ 1
4
sinðaðtÞÞ

� sinðaðt � sÞÞ expð�iðwðt � sÞÞ � wðtÞÞI��I�þÞ. ð8Þ

Because the trigonometric terms are scalar functions of
time and the trace acts on the operators only, the quantities
Tr½I�þI��� and Tr½I��I�þ� should be evaluated.

Using the Cartesian definition of the operators [14], the
following relations are valid:

Tr½I�þI��� ¼ 1; Tr½I��I�þ� ¼ 1. ð9Þ

Using known trigonometric relations (cos [x]) = l/2(exp
[ix] + exp [�ix]), we obtain

1
4
sinðaðtÞ sinðaðt � sÞÞðexpð�iðwðt � sÞ � wðtÞÞÞ
þ expðþiðwðt � sÞ � wðtÞÞÞÞ
¼ 1

2
sinða½t� sinða½t � s�Þ cosðw½t � s� � w½t�Þ. ð10Þ

Now term ‘‘ÆÆdx (t � s)dx (t)ææ’’ should be considered.
For a simple two-site chemical exchange system for identi-
cal spins with complete randomization between jumps, this
evaluates to P AP Bdx2

av exp½�s=sex�. Here, PA and PB are
the populations of the two sites, dxav is the average chem-
ical shift of the two species, and sex is the mean lifetime of
the exchanging species at the two sites. Therefore, return-
ing to Eq. (1) we obtain for the following equation for
the argument of the exponential for the longitudinal mag-
netization, meaning Eq. (11) results

I�z ðtÞ ¼ exp

Z 1

0
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� �
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¼ exp �tK
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0
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�
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0
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�
. ð11Þ

Here, K is equal to P AP Bdx2
av.

To find expressions for the transverse magnetization the
Trace of the product of commutators in Eq. (2) needs to be
evaluated. By a similar treatment to that used for the treat-
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ment for the longitudinal magnetization the equations were
obtained for the transverse case. The complete system of
equations derived are given, with I�þ½t� indicating the trans-
verse magnetization in the TDRF as acted upon by the
chemical exchange relaxation mechanism (i.e., Eq. (2)) and
I�z ½t� (Eq. (1)) is the longitudinal magnetization in the TDRF
where the dominant relaxation mechanism is the chemical
exchange. The following expressions were obtained:

I�þ½t� ¼ exp½�tN ½t� þ L1½t� þ L2½t�� exp½�iðtL0½t� � L3½t�Þ�;
ð12Þ

I�z ½t� ¼ exp½�tI1½t� þ I2½t��. ð13Þ

With the following definitions:

N ½t� ¼ K
Z t

0

cos a½t� cos a½t � s� exp½�s=sex�dsþ K=2

�
Z t

0

sin a½t� sin a½t � s� sinðwðt � sÞ � wðtÞÞ�

� exp½�s=sex�ds; ð14Þ

L0½t� ¼ K=2

Z t

0

sin a½t� sin a½t � s� sinðwðt � sÞ � wðtÞÞ�

� exp½�s=sex�ds; ð15Þ

L1½t� ¼ K
Z t

0

cos½a½t�� cos½a½t � s�� exp½�s=sex�sds; ð16Þ

L2½t� ¼ K=2

Z t

0

sin a½t� sin a½t � s� cosðwðt � sÞ � wðtÞÞ�

� exp½�s=sex�sds; ð17Þ

L3½t� ¼ K=2

Z t

0

sin a½t� sin a½t � s� sinðwðt � sÞ � wðtÞÞ�

� exp½�s=sex�sds; ð18Þ

I1½t� ¼ K
Z t

0

sin a½t� sin a½t � s� cosðwðt � sÞ � wðtÞÞ�

� exp½�s=sex�ds; ð19Þ

I2½t� ¼ K
Z t

0

sin a½t� sin a½t � s� cosðwðt � sÞ � wðtÞÞ�

� exp½�s=sex�sds. ð20Þ

It should be noted that Eqs. (20) and (21) can be rewrit-
ten as:

I�þ½t� ¼ exp½�Rxy ½t�� exp½�i/½t��; ð21Þ
I�z ½t� ¼ exp½�Rz½t��; ð22Þ

where Rxy [t] = tN [t] � Ll [t] � L2 [t], /[t] = (tL0 [t] � L3 [t]),
Rz [t] = tI1 [t] � I2 [t].

Here, Rxy [t] is the relaxation rate function for the trans-
verse magnetization in the TDRF, / [s] is the phase of the
transverse magnetization in the TDRF, and Rz [t] is the
relaxation rate function for the longitudinal magnetization
in the TDRF. Note that the longitudinal magnetization has
no phase modulation, as expected.
The more commonly encountered expressions specific to
the case where the rf parameters are constants, for the lon-
gitudinal exchange rate constant in the tilted doubly rotat-
ing frame, can be obtained from Eqs. (13) and (14) by
setting the instantaneous precession frequency in the tilted
doubly rotating frame to a constant, and by also making
the limits of integration in the expressions to be from zero
to infinity. This step follows for any case when the
exchange constant is much less than the time t of interest.
One must also then set the tilt angle of the magnetization
with respect to the laboratory field direction to a constant.
The same arguments apply for the transverse exchange rate
constant in the tilted doubly rotating frame.

We note that because of the range of values of the limits
of integration, the terms in Eqs. (13)–(23) where there is a
multiplication by the single s term will be much smaller
than the other integrated quantities so that in some cases
these terms may be neglected.

3. Methods

The derived time-dependent relaxation functions during
adiabatic rotation can be used to describe the relaxation
phenomena during adiabatic pulses through the x1 (t)
and a (t) time-dependencies. In the frequency modulated
frame (in terminology of adiabatic pulses associated with
the rotating frame), the amplitude and frequency modulat-
ed functions for the HS1 pulse are given by:

x1ðtÞ ¼ xmax
1 sechðbð2t=T p � 1ÞÞ; ð23Þ

and

xRFðtÞ � xc ¼ A tanhðbð2t=T p � 1ÞÞ; ð24Þ
where t 2 [0,Tp], b is a truncation factor (sech (b) = 0.01), A

is the amplitude of the frequency sweep in rad/s, Tp is pulse
length, xc is carrier frequency (the center frequency in the
bandwidth of interest), and xmax

1 is the maximum value of
x1 (t). During this AFP pulse, the vector xeff (t) changes its
orientation at the instantaneous angular velocity, da (t)/dt.

To calculate the average effective relaxation rate con-
stant R2qex during an AFP pulse of length Tp, all of the
R2q,ex contributions during the pulse must be taken into
account and the average relaxation rate is determined by

R2q;ex ¼
1

T p

Z T p

0

R2q;exðtÞdt. ð25Þ

Numerical calculations were produced using Mathematica
(Version 5.0) from Wolfram Research.

4. Results and discussion

Fig. 1 shows three-dimensional plots of the R2q,ex depen-
dencies during the HS1 on the exchange correlation time. In
Fig. 1 the R2q,ex dependencies during the HS4 pulse are pre-
sented. The oscillatory behavior of R2q,ex increases in the
middle of the pulse (Fig. 1). It can be seen that the oscillatory
terms having a small contribution to R2q,ex during the pulse
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Fig. 1. (A and B) Calculated transverse relaxation rate functions R2q,ex during the HS1 and HS4 pulses, respectively, for the full solution as a function of
exchange residence times sex and time during the pulse t; xmax

1 =2p ¼ 2:5 kHz was used.
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duration t, and the envelope of R2q,ex resembles the ampli-
tude modulation function of the AFP pulse.

The issue of time evolution of the magnetization during
time-dependent RF in the first rotating frame has been con-
sidered sparingly in the literature [4]. An extant treatment
is the use the Redfield super matrix approach [4]. The
resulting expressions were thought only amenable to com-
puter calculation without any increase in ‘‘physical under-
standing.’’ In our treatment, which is valid in the fast
correlation time regime, the results are highly satisfying.
The tilt angle of the effective field vector to the B0 field is
taken as time-dependent as well as the precession frequency
around the effective field direction. In addition, the limits of
integration for the definition of the spectral density are tak-
en to be time-dependent. This is why we choose to refer to
time-dependent rate functions rather than rate constants.
When considering the foundational literature on relax-
ations [4–6], it can be seen that in the most general case
the spectral densities are time-dependent. It should be not-
ed that in Eqs. (12) and (13) the oscillatory terms under cer-
tain conditions, such as slow and intermediate exchange
regimes, may be important for the accurate fitting of the
model to data. The results obtained agree with that of Fish-
er et al. [17] and that of Palmer�s group [18] when special-
ized to a constant rf pulse.

The motivation for the theoretical work presented has
been to derive the relaxation functions during adiabatic
rotation. Preliminary work in this regard has already
appeared in print [2]. Since the formalism developed is
quite general, the resulting method of development should
be of use for a wide class of ‘‘shaped pulses’’ [9].

Acknowledgments

This work was partially supported by NIH Grants
CA92004, RR08079, the Keck Foundation, MIND Institute.
References

[1] M. Garwood, L. DelaBarre, The return of the frequency sweep:
designing adiabatic pulses for contemporary NMR, J. Magn. Reson.
153 (2001) 155–177.

[2] S. Michaeli, D. Sorce, D. Idiyatullin, K. Ugurbil, M. Garwood,
Transverse relaxation in the rotating frame induced by chemical
exchange, J. Magn. Reson. 169 (2004) 293–299.

[3] A. Tannus, M. Garwood, Improved performance of frequency-swept
pulses using offset-independent adiabaticity, J. Magn. Reson. A 120
(1996) 133–137.

[4] P. Hubbard, Quantum-mechanical and semi-classical forms of the
density operator theory and relaxation, Rev. Mod. Phys. 33 (1961)
249–264.

[5] F. Bloch, Generalized theory of relaxation, Phys. Rev. 105 (1957)
1206–1222.

[6] A. Redfield, On the theory of relaxation processes, IBM J. (1957)
19–31.

[7] M. Garwood, K. Ugurbil, B1 insensitive adiabatic pulses, NMR Basic
Princ. Progr. 26 (1992) 109–147.

[8] M. Goldman, Formal theory of spin–lattice relaxation, J. Magn.
Reson. 149 (2001) 160–187.

[9] H. Green, R. Freeman, Band-selective radiofrequency pulses, J.
Magn. Reson. 93 (1991) 93–141.

[10] M. Rose, Elementary Theory of Angular Momentum, Dover,
1995.

[11] R. Kubo, K. Tomita, J. Phys. Soc. Japan 9 (1954) 888–919.
[12] B. Cowan, Nuclear Magnetic Resonance and Relaxation, Cambridge

University Press, Cambridge, 1997.
[13] H. Wennerstrom, Nuclear magnetic relaxation induced by chemical

exchange, Mol. Phys. 24 (1972) 69–80.
[14] J. McConnell, The Theory of Nuclear Magnetic Relaxation in

Liquids, Cambridge University Press, Cambridge, 1987.
[15] M. Levitt, R. Freeman, T. Frenkiel, Broadband heteronuclear

decoupling, J. Magn. Reson. 47 (1982) 328–330.
[16] M. Silver, R. Joseph, D. Hoult, Highly selective p/2 and p pulse

generation, J. Magn. Reson. 59 (1984) 347–351.
[17] M. Fischer, A. Majumdar, E. Zuiderweg, Protein NMR relaxation:

theory, applications and outlook, Progr. NMR Spectrosc. 33 (1998)
207–272.

[18] O. Trott, A. Palmer, Theoretical study of R1q rotating frame and R2

free-precession relaxation in the presence of n-site chemical exchange,
J. Magn. Reson. 170 (2004) 104–112.


	The time-dependence of exchange-induced relaxation during modulated radio frequency pulses
	Introduction
	Theory
	Methods
	Results and discussion
	Acknowledgments
	References


